Multiplicity of Homoclinic Solutions for Fractional Hamiltonian Systems with Subquadratic Potential

نویسندگان

  • Neamat Nyamoradi
  • Ahmed Alsaedi
  • Bashir Ahmad
  • Yong Zhou
چکیده

In this paper, we study the existence of homoclinic solutions for the fractional Hamiltonian systems with left and right Liouville–Weyl derivatives. We establish some new results concerning the existence and multiplicity of homoclinic solutions for the given system by using Clark’s theorem from critical point theory and fountain theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential

where n ∈ Z, u ∈ RN , u(n) = u(n + ) – u(n) is the forward difference operator, p,L : Z→ RN×N and W : Z× RN → R. As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n)→  as n→±∞. In addition, if u(n) ≡ , then u(n) is called a nontrivial homoclinic solution. In general, system (.) may be regarded as a discrete analogue of the following second order Hamiltonian sy...

متن کامل

Existence and Multiplicity of Homoclinic Solutions for the Second Order Hamiltonian systems

In this paper we study the existence and multiplicity of homoclinic solutions for the second order Hamiltonian system ü−L(t)u(t)+Wu(t, u) = 0, ∀t ∈ R, by means of the minmax arguments in the critical point theory, where L(t) is unnecessary uniformly positively definite for all t ∈ R and Wu(t, u) sastisfies the asymptotically linear condition. Mathematics Subject Classification: 37J45, 58E05, 34...

متن کامل

Existence of Solutions to Fractional Hamiltonian Systems with Combined Nonlinearities

This article concerns the existence of solutions for the fractional Hamiltonian system −tD ∞ ` −∞D α t u(t) ́ − L(t)u(t) +∇W (t, u(t)) = 0, u ∈ H(R,R), where α ∈ (1/2, 1), L ∈ C(R,Rn ) is a symmetric and positive definite matrix. The novelty of this article is that if τ1|u| ≤ (L(t)u, u) ≤ τ2|u| and the nonlinearity W (t, u) involves a combination of superquadratic and subquadratic terms, the Ham...

متن کامل

An index theory with applications to homoclinic Orbits of Hamiltonian systems and Dirac equations

In this paper, we will define the index pair (iA(B), νA(B)) by the dual variational method, and show the relationship between the indices defined by different methods. As applications, we apply the index (iA(B), νA(B)) to study the existence and multiplicity of homoclinic orbits of nonlinear Hamiltonian systems and solutions of nonlinear Dirac equations.

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017